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Digital Skills collaborative. Much has been written about 
the use of predictive analytics 
in orthopaedics in terms 
of predicting outcomes 
of surgery, optimising 

operational efficiency, etc1. Predictive analytics 
has classically been applied to ‘traditional’ 
datasets such as tabular continuous or 
discrete data in order to identify trends and 
relationships. However, artificial intelligence 
(AI) can also handle ‘non-traditional’ data 
such as unfiltered social media text and 
images through natural language processing 
(NLP) and computer vision (CV), to reach a 
predictive output. However, explaining how AI 
reaches such predictions can be problematic, 
especially with complex setups like convoluted 
neural networks (CNNs) and graphical neural 
networks (GNNs). Such ‘black box’ analytics are 
opaque and pose challenges in relation to data 
quality and output, privacy, trusting the output 
and ethical considerations2.

This article will start with a description of using 
predictive analytics with non-traditional (NT) 
data. It will then discuss the model complexity 
vs. explainability to optimise accuracy and user 
confidence. Lastly, the importance of reporting 
guidelines regarding predictive analytics in 
healthcare will be discussed.

Predictive analytics and  
non-traditional data

NT data refer to data that cannot be easily 
handled by traditional statistical tools or 
methods because the data does not fit neatly 
into the fields, or it may be too unstructured 
or varied to fit into a traditional database. The 
data may also be too large: examples include 
the billions of search engine uses undertaken 

on a daily basis, resulting in huge amounts 
of information. Such data volumes may be 
measured in Petabytes to Exabytes (1,000 to  
1 million TB) and is typically termed ‘Big data’. 

Machine learning (ML) allows big data to be 
processed in a stream, i.e. analysed and acted 
upon in near real-time, rather than being 
collected and stored for later batch processing 
because of the above challenges. Other 
examples of challenging data include newer 
forms of personal data produced by various 
connected digital platforms such as social 
media posts, or devices like smartphones, 
fitness trackers, computer tablets, smart home 
devices, medical devices, etc., resulting in large 
amounts of unstructured text, numerical and 
image data. Because this type of data is not 
systematically structured or stored, its analysis 
has only become possible thanks to advances 
in AI and redictive analytics. Previous analysis 
of large amounts of data, such as that found in 
the Facebook and Instagram ecosystems relied 
on traditional statistical methods and simple 
algorithms, requiring human intervention. 
These were far less efficient than modern 
AI-based techniques such as CNNs and more 
recently, GNNs, as discussed below.

Graph data is another form of NT data. It 
is a non-linear data structure representing 
relationships between entities (Figure 1).  
The most common applications include social 
networks (connections between friends or 
followers) and recommendation systems 
(personalised suggestions while the customer is 
still browsing). Graph data can also be used to 
describe group dynamics in a team sport, to find 
the shortest route in a navigation programme, 
and to identify spread of information or  
even diseases among social networks.  
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The presence of different interconnected 
data sources, found in various domains, from 
social networks, recommendation systems, 
science and cybersecurity, has fuelled the rapid 
evolution of GNNs3. These networks can model 
and understand complex relationships and 
make sense of the interlinked data to help solve 
real-world problems better than traditional ML 
models (e.g. CNNs). 

Deep learning (DL), a subset of ML, is a 
powerful method that can be used to analyse 
the unstructured NT data described above 
(see Figure 2). It is based on artificial neural 
networks using multiple layers that simulate 
the human brain3. NLP and CV are applications 
of DL that help with data analysis. Examples of 
NLP include language translation and speech 
recognition, while medical applications include 
the analysis of clinical, patient communication 
and research summarisation, if necessary, after 
conversion from image or sound data to textual 
data1. Similarly, CV examples include object 

detection (autonomous surveillance), image 
classification (medical radiology, dermatology 
and pathology) and face recognition, with 
orthopaedic applications including implant 
positioning and gait analysis1.

Although DL algorithms perform best after 
being developed/trained on large datasets, 
they require significant computational 
resources including specialised hardware4. 
Furthermore, DL needs vast amounts of 
labelled training data, and the performance of 
a trained algorithm depends heavily on how 
the training data represents the data being 
analysed. If the dataset is small or noisy, the 
model can overfit to the training data and will 
not be applicable to unseen data. This can 
cause models to learn and propagate biases 
present in the training data, leading to unfair 
or discriminatory outcomes. This can raise 
ethical questions, particularly around privacy, 
consent, and fairness. DL models are often 
criticised for their lack of transparency and 
interpretability and explainability, making 
it difficult to understand how decisions are 
made5. This is addressed below.

Making AI models less opaque: 
Explainable AI (XAI)

The term ‘black box’, originally coined during 
World War II to describe aircraft components 
housing sensitive data, was first applied to AI 
in 1961, to denote analysis or interpretation 
through unknown means. More recently, the 
term has evolved to signify the opaque nature 
of ML models6. ML and DL models, construct 
non-linear relationships in data. This enables 
more complexity and in turn results higher 
accuracy than traditional statistical models. 
The complexity of the relationships however 
generates a lack of clarity in the modelling 
structure. When the arrays are interrogated 
as to which factors in training data leads to 
the particular conclusions it can become too 
complex to interpret. This opacity has earned 
them the name ‘Black Boxes’, highlighting the 
difficulty in understanding and interpreting 
their inner workings. Lack of transparency 
raises trust and accountability concerns with 
users, especially in critical applications such 
as healthcare.

To address this, Explainable Artificial 
Intelligence (XAI) proposes a shift from the 
black box model to a fully transparent AI by 
devising methods and tools to mitigate the 
opacity in models, without degrading their 
accuracy and performance. This, it is hoped, 
would make the judgments of complex 
models understandable and expected, by 
revealing the internal mechanisms in a 
comprehensible manner7.

XAI can be represented in various ways, 
from mathematical equations to visual 
representations such as scatter plots. >>  
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Figure 1: Diagrammatic representation of graph data.  Graphs lack a predefined structure for data storage (left side), and there 
is no inherent knowledge of node-to-neighbour relationships, as illustrated on the right side.  Left side is amenable to CNNs, 
right side requires GNNs.

Figure 2: Deep learning as a subset of machine learning 
(from AlZubaidi et al. Review of deep learning: concepts, 
CNN architectures, challenges, applications, future 
directions. J Big Data. 2021;8,:53).
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An example of XAI in medical imaging is 
employing saliency mapping, a process 
where areas of an image a model considers 
important in generating a prediction, are 
highlighted providing a visual indication of 
the regions of interest which are determining 
the outcomes. The use of saliency mapping 
as a tool, has shown promising results in 
implant identification and models predicting 
the risk of implant failure or loosening8 
improving the interpretation features. 
Similarly, LIME (Local Interpretable Model-
agnostic Explanations) approximates 
complex models with simpler, interpretable 
models locally around a prediction, offering 
insights into individual decisions. SHAP 
(SHapley Additive exPlanations) values, 
based on cooperative game theory, provide 
a unified measure of feature importance in 
predictive analytics, making it possible to 
understand the contribution of each feature 
in the data to the model’s output.

Generative AI, seen in LLMs, has been used 
to create new content such as text, images, 
and sound, also faces significant challenges 
regarding explainability. In the context of 
orthopaedics, generative AI has been used 
to simulate and visualise surgical outcomes 
in arthroplasty. For example, a group led 
by Bardia Khosravi from the Mayo Clinic9 
applied Generative Adversarial Networks 
(GANS) to create high-fidelity synthetic 
pelvis radiographs which were used for 
DL-based image analysis. The synthetic 
images were indistinguishable from real 
images and showed equivalent performance 
when assessed by DL models. However, 
the use of synthetically generated images 
to train other algorithms raises questions 
of whether this is a suitable way to train 
algorithms and, in turn, the validity of the 
decision making that arises from these. This 
makes the results difficult to interpret. The 
challenge lies in understanding how these 
models generate specific outputs from the 
given inputs, particularly when the training 
data may contain inherent broad variation 
in structure and biases. A systemic review 
reported that the diagnostic accuracy 
of LLMs was significantly worse than 
clinicians10. To ensure that patient safety 
in an autonomous clinical decision-making 
scenario is maintained, transparency and 
assurances in LLMs is vital, and assurances 
in performance should be validated to a 
level that is at least as good as, if not better, 
than clinicians.

The lack of overall transparency with how 
AI algorithms work is a barrier to humans 
trusting and accepting these tools. It 
highlights the need for a robust approach 
to the development, training, testing and 
reporting of AI algorithms in healthcare.

Reporting guidelines for predictive 
analytics in orthopaedics

One of the other key advancements helping 
drive improvements around the potential 
clinical integration of AI based predictive 
analytics is the formation of associated 
development and reporting guidelines.

The Clinical Practice Integration of AI (CPI-
AI) framework11 is one proposed application 
using the IDEAL principles12 of surgical 
innovation to AI applications in T&O. It 
identifies the steps required from the 
beginning of an AI based research proposal 
through to eventual clinical deployment and 
includes six stages:

• Stage 0 – Concept outline 

• Stage 1 – Algorithm development 

• Stage 2a – External validation 

• Stage 2b – Prospective assessment 

• Stage 3 – Clinical impact assessment 
(Randomised Controlled Trial) 

• Stage 4 – Implementation and model 
surveillance

The majority of current work in T&O using 
AI based predictive analytics falls into  
stage 1, with very few progressing beyond 
this to build the evidence base for necessary 
regulatory approvals and eventual clinical 
practice integration13. The application of 
NLP for prediction of selection for hip and 
knee arthroplasty surgery has previously 
demonstrated the importance of external 
validation in the accurate assessment of 
predictive capability, given a significant drop 
in model performance when tested on new 
external data sources14.

Another key aspect to the development 
of AI based predictive analytics is the use 
of reporting checklists. These serve not 
only as guidance to researchers who are 
developing AI algorithms, but also provide 
for a robust system of assessment of 
quality and diligence. Several reporting 
checklists have been developed 
specifically for AI applications for 
various research methodology, including 
predictive analytics15-18.

The main checklist in this regard is the 
Transparent Reporting of a multivariable 
prediction model for Individual 
Prognosis Or Diagnosis AI (TRIPOD+AI) 
statement15, which was published by 
Collins et al. following a modified Delphi 
process. This checklist establishes 27 
criteria across the domains of study title, 
abstract, introduction, methods, results 
and discussion.

One of the key changes to the original 
TRIPOD guidance is an emphasis on the 
importance of fairness in the evaluation of 
AI. Points considered include evaluation of 
model performance based on key subgroups 
(for example different sociodemographic 
profiles which will vary dependent on the 
target application), as well as reporting 
standards that include patient and public 
involvement, and open science principles. 
The development of the associated 
Prediction model Risk Of Bias ASsessment 
Tool (PROBAST+AI) is still underway and 
will further help delineate assessment of the 
quality and risk of bias in prediction models16.

Other checklists such as the Developmental 
and Exploratory Clinical Investigations of 
DEcision support systems driven by Artificial 
Intelligence (DECIDE-AI)17 and Consolidated 
Standards of Reporting Trials-Artificial 
Intelligence (CONSORT-AI)18 statements 
are also important in relation to further 
improving and reporting predictive analytics, 
particularly as a research proposal moves 
towards clinical practice integration (CPI-AI 
stages 2b and 3). The DECIDE-AI checklist 
particularly focuses on early-stage clinical 
evaluation of AI systems, including predictive 
analytics and includes 17 specific reporting 
items with a particular focus on proof of 
clinical utility, safety, and human factors, in 
preparation for large-scale trials. The final 
consideration is the CONSORT-AI statement 
that covers the conduct of Randomised 
Controlled Trials related to AI interventions 
and adds a further 14 new checklist items to 
the original CONSORT statement. 

These reporting standards, when added 
to the CPI-AI framework, can provide a 
clear pathway for safe and evidence-based 
development and deployment of predictive 
AI in T&O.

Conclusion

This article has highlighted the challenges 
around analysing the huge amount of 
NT data produced by personal and other 
electronic devices which could help with 
patient care. Newer methods of AI, capable 
of dealing with such huge amounts of varied 
data have been described. Safeguards 
about using and reporting the use of AI 
models in healthcare have been explained. 
The importance of these cannot be 
underestimated to help improve the quality 
of research and assist the future integration 
of predictive AI into clinical practice. n
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