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A rtificial intelligence (AI) has 
significantly advanced since its 
theoretical roots in the 1940s, 
evolving from simple shape and 
pattern recognition to handling 

complex visual and language tasks1,2.

The development of deep learning, especially 
following a landmark achievement in the 
2012 ImageNet competition, propelled AI 
applications into realms previously dominated 
by human cognition, such as image recognition 
and analysis3. This breakthrough fostered the 
growth of computer vision (CV), a branch of AI 
that enables machines to interpret and analyse 
visual data in ways that can support or even 
exceed human capabilities in specific tasks.

In trauma and orthopaedics, CV is showing 
promise, but it remains relatively new. 
Tools like BoneView™ are helping clinicians 
by identifying fractures on X-rays, while 
technologies like VERASENSE™ assist in real-
time alignment of implants during surgery4. 
Although these tools highlight what’s possible, 
CV’s routine use in orthopaedic practice is 
only just starting to take hold5,6. Interest in 
CV is growing, fuelled by an ever-increasing 
volume of healthcare data. Patient imaging, 
surgical records, and electronic health data all 
contribute to a rich pool of information that 
can train and refine these AI models5.

As CV becomes more integrated into clinical 
practice, we must address critical hurdles 
related to data privacy, availability, and 
safety to ensure the technology’s safe and 
effective use. With new draft NICE Guidelines 
recommending the use of AI for fracture 
detection in urgent care7, orthopaedics stands 
at the brink of an AI transformation. The 
prospect of CV integrated into day-to-day 
orthopaedic workflows hints at a future where 
musculoskeletal care becomes more efficient 
and precise, helping clinicians make faster, 
data-driven decisions that ultimately improve 
patient outcomes6,8.

Why AI and computer vision?

In orthopaedic surgery, variability in how 
surgeons interpret fractures is a well-known 
issue. Human bias contributes to inconsistencies 
in fracture recognition and classification across 
trauma cases, affecting injuries from both 
upper and lower limbs9,10. However, recent 
advancements in AI, particularly in CV, offer 
potential to enhance both the speed and 
reliability of these assessments, providing tools 
that can standardise diagnostic accuracy and 
mitigate subjective variability5.

CV’s underlying technology—complex 
neural networks—makes it particularly 
suited for medical image processing11,12. 
Unlike conventional machine learning (ML) 
models like decision trees or support vector 
machines, CV relies on deep neural networks 
that use convolutional layers, allowing 
the model to identify and respond to local 
spatial and temporal patterns in images11,12. 
These convolutional layers, particularly in 
Convolutional Neural Networks (CNNs), 
perform filtering operations that recognise 
edges, shapes, and textures, making them ideal 
for analysing intricate features in radiographs 
and CT scans5,13. This architecture enables 
CV models to efficiently process massive 
volumes of image data while requiring 
fewer computational resources. Rather than 
replacing human judgment, CV functions 
to support surgeons and radiologists by 
providing consistent, bias-reduced insights and 
streamlining clinical decision-making5,6,13.

Current applications of computer vision

In orthopaedics, CV models have shown 
promise for fracture detection and 
classification on radiographs and CT 
scans, offering enhanced accuracy and 
efficiency1,2. Other medical fields have seen 
similar benefits; for instance, clinicians are 
employing CV for mammogram analysis in 
early breast cancer detection, fundoscopy for 
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diagnosing papilledema, and CT 
imaging to identify intracerebral 
haemorrhages13. These applications 
streamline diagnostic workflows, 
allowing for timely and more 
accurate interventions.

At the Southwest London 
Elective Orthopaedic Centre 
(SWLEOC), an ML model has been 
designed to screen postoperative 
arthroplasty X-rays. The model 
generates heat maps overlaid on 
the images, visually highlighting 
areas of interest that it prioritises 
during analysis. This technique is 
called saliency mapping and not 
only aids in identifying potential 
postoperative issues, but also 
provides clinicians with a clearer 
understanding of the model’s 
interpretive process and supporting 
informed decision-making.

A wound assessment tool 
to streamline postoperative 
wound assessment in total knee 
arthroplasty (TKA) patients using computer 
vision is also currently being developed. This 
initiative aims to develop and validate a deep 
learning algorithm that categorises wounds. 
By leveraging labelled wound images and 
expert input, the algorithm aspires to provide 
a rapid, accurate assessment tool that aligns 
with clinical standards. The project’s ultimate 
goal is to empower patients with an accessible 
tool, allowing early intervention for wound 
complications while reducing the follow-up 
burden on healthcare professionals.

How does computer vision work?

Imagine teaching a child to identify a banana. 
By showing them bananas of different shapes, 
sizes, and colours, they eventually recognise 
a banana by focusing 
on essential features 
like its shape, 
curvature, and colour. 
Similarly, CV operates 
by ‘learning’ from 
numerous labelled 
images. A CV model is 
trained on extensive 
datasets containing 
annotated images 
(e.g., ‘fracture’ or ‘no 
fracture’), learning to 
identify the unique 
characteristics that 
define each category. 
This training allows  
CV systems to process 
visual information  
and ‘see’ in a way  
that can augment 
clinical diagnosis1,13.

CV algorithms operate through several key 
technical stages:

1. Classification: The CV model sorts images 
into predefined classes, such as identifying 
an image as depicting a ‘fractured’ or 
‘non-fractured’ bone. This process involves 
the model learning to detect patterns that 
distinguish between these classes, often 
relying on thousands to millions of  
labelled examples.

2. Object Detection: Beyond merely 
categorising an image, object detection 
identifies and locates specific objects or 
areas of interest within the image. For 
instance, the model may pinpoint the exact 
location of a fracture line within an X-ray.

3. Segmentation: Segmentation divides an 
image into multiple distinct segments or 
regions, enabling the model to isolate 
specific parts, such as bones or joint spaces 
in an orthopaedic X-ray.

4. Feature Extraction: This stage involves 
identifying key characteristics, such as 
edges, textures, or specific shapes, within 
an image that are relevant to the diagnosis. 
This extraction process allows the model 
to develop a nuanced understanding of the 
image, supporting clinical tasks like fracture 
detection or implant alignment.

Following training, the model undergoes 
a testing phase where its accuracy and 
generalisability are evaluated using a separate 

dataset. This testing 
helps ensure 
that the model 
performs reliably in 
real-world clinical 
applications13,14.  
For example,  
models developed to 
identify fractures in 
training images must 
demonstrate the same 
accuracy when applied 
to new images from 
different institutions 
or patient populations. 
This need for rigorous 
external validation 
and continuous 
refinement highlights 
the complexity of 
implementing CV in 
clinical settings. >>

Figure 1: CV model for evaluating post-arthroplasty images.
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As CV continues to evolve, so too does 
its potential to support orthopaedic care, 
particularly in trauma settings. CV’s ability to 
consistently and accurately interpret visual 
data could transform diagnosis, procedural 
planning, and post-operative monitoring. 
However, as promising as these tools are, 
additional clinical trials, regulatory oversight, 
and improvements in data quality and 
reporting standards will be necessary to ensure 
CV models perform reliably and safely across 
diverse clinical environments.

Future perspectives in 
orthopaedic computer vision

As computer vision (CV) 
continues to integrate into 
orthopaedic practice, its future 
holds substantial promise 
but is also met with critical 
challenges. While tools like 
BoneView™ and VERASENSE™ 
illustrate CV’s potential for 
fracture detection and surgical 
alignment13, broader applications require 
scalable data solutions, advanced multi-tasking 
capabilities, and regulatory advancements to 
maximise CV’s clinical impact.

One of the foremost challenges to CV 
adoption in orthopaedics is the availability and 
diversity of large-scale annotated datasets. 

Manual video labelling, especially for complex 
procedures like arthroplasty or fracture 
reduction, demands significant time and 
resources, limiting scalability14,15. Interactive 
and semi-automatic labelling tools are 
emerging as viable solutions, enabling trained 
novices to label surgical videos with accuracy 
comparable to specialists13–15. Applying these 
methods in orthopaedics could accelerate data 
generation, supporting more robust model 
training without overwhelming clinical teams.

Despite these advancements, most CV 
implementations in orthopaedics remain at 
the feasibility or proof-of-concept stage. Key 
hurdles include strict data privacy and security 
requirements, ethical considerations, and the 
inherent complexities of integrating CV into 
existing healthcare IT systems. Effective CV 
models require diverse datasets to ensure 

accurate, generalisable algorithms, yet 
most training data is sourced from single 
institutions. This localism limits the broader 
applicability of models and raises challenges 
for external validation, especially given the 
logistical and privacy constraints associated 
with sharing sensitive patient data like X-rays 
across institutions.

Federated learning offers a potential 
solution to these data limitations. By 
allowing institutions to collaboratively train 
a shared model without exchanging raw 
data, federated learning enables hospitals to 
maintain patient privacy while contributing 
to a collective, diversified dataset16,17. For 
example, hospitals across regions can train 
a CV model on local orthopaedic X-ray 
images to identify fractures or assess joint 
degeneration. Rather than transferring 
sensitive images, each institution shares 
only model updates — patterns learned from 
local data — back to a central server, thereby 
enhancing accuracy and generalisability 
without compromising patient confidentiality.

Future CV models will need multi-tasking 
capabilities to handle various orthopaedic 
conditions — fractures, joint dislocations, and 
soft tissue injuries — instead of focusing on 
isolated tasks. Although CNNs have shown 
strong performance in fracture detection, 
challenges remain in identifying subtle or 
occult fractures, such as scaphoid fractures, 
where CV models struggle to surpass 
the accuracy of experienced orthopaedic 
surgeons18. Prospective trials and  
multi-centre validation studies are essential 
to ensure that these models are reliable 
and generalisable across diverse patient 
populations and clinical environments.

As CV technology matures, its ability to 
assist orthopaedic surgeons in diagnostic 
accuracy and procedural planning will 

likely expand. By addressing 
the technical, ethical, and 
practical barriers of CV 
integration through innovative 
approaches like federated 
learning and improved 
multi-tasking architectures, 
CV has the potential to 
transition from an emerging 
technology to an integral 
component of orthopaedic 
workflows. Ultimately, CV in 
orthopaedics will complement 
human expertise — enhancing 

diagnostic consistency, minimising bias, 
and enabling surgeons to make data-driven 
decisions that improve patient outcomes. n
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Figure 2: Federated model concept.

“Future CV models will need  
multi-tasking capabilities to handle various 
orthopaedic conditions — fractures, joint 

dislocations, and soft tissue injuries — 
instead of focusing on isolated tasks.”
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